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This is the second of two articles by the authors dealing with asymptotic ex- 
pansions for forced-convection heat or mass transfer to laminar flows. It is 
shown here how the method of the first paper (Acrivos & Goddard 1965), which 
was used to derive a higher-order term in the large PBclet number expansion 
for heat or mass transfer to small Reynolds number flows, can yield equally well 
higher-order terms in both the large and the small Prandtl number expansions 
for heat transfer to laminar boundary-layer flows. By means of this method an 
exact expression for the first-order correction to Lighthill’s (1950) asymptotic 
formula for heat transfer at  large Prandtl numbers, as well as an additional 
higher-order term for the small Prandtl number expansion of Morgan, Pipkin 
& Warner (1958)’ are derived. The results thus obtained are applicable to systems 
with non-isothermal surfaces and arbitrary planar or axisymmetric flow geo- 
metries. For the latter geometries a derivation is given of a higher-order term in 
the PBclet number expansion which arises from the curvature of the thermal layer 
for small Prandtl numbers. Finally, some applications of the results to ‘similarity ’ 
flows are also presented. 

1. Introduction 
In  an earlier paper (Acrivos & Goddard 1965) we reviewed briefly the general 

problem of obtaining a solution to the laminar forced-convection heat transfer 
equation for large PBclet numbers Pe. Then, for the special case of laminar flows 
with small or moderate Reynolds numbers Re, we derived a general formula for 
the first ‘correction’ term, in Pe, to the well-known asymptotic (Pe --f a) 
expression for steady-state heat transfer from non-isothermal surfaces, which was 
applicable to quite general, planar or axisymmetric, flows. 

In  the present paper, we wish to consider the somewhat related problem of 
obtaining higher-order approximations to the asymptotic rate of heat transfer 
for laminar ‘boundary-layer’ flows, in the limits of large or small Prandtl 
numbers Pr. In  other words, whereas our earlier article (Acrivos & Goddard 
1965) dealt with the forced-convection problem for which Pe = (PrRe)+co 
with Re $xed, this second paper will be concerned with the limiting subcases 
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Pr + m and Pr -+ 0 of the well-known ‘boundary-layer ’ problem, involving 
now both thermal as well as viscous boundary layers, for which PrRe- tco  
with Pr $xed. Thus, the present work represents a continuation and extension of 
the previous analyses of Morgan et al. (1958), Merk (1959) and Meksyn (1961). 

We recall at  this point that Merk (1959) and Meksyn (1961) have already 
derived several higher-order terms in the asymptotic expansion of the Nusselt 
number for large Pr, but their results are restricted to the rather special case of 
boundary layers with ‘similar ’ velocity and temperature profiles. In  contrast, 
while we shall obtain here, in $3,  only one ‘correction’ term to the asymptotic 
(Pr --f co) expression for heat transfer (Lighthill 1950; Levich 1962), our result 
will be applicable to quite general, planar or axisymmetric, boundary layers 
past non-isothermal surfaces. 

As for the other limiting case, that of small Pr, the previous work of Morgan 
et al. (1958) has already yielded, for planar flows, one correction term to the 
classical Boussinesq (1905) asymptotic expression for heat transfer with Pr -+ 0. 
The purpose of the analysis to be presented in 5 4 will be then to derive an addi- 
tional higher-order term in Pr as well as a term in Pe, the latter arising from the 
curvature of axisymmetric thermal layers. 

2. Basic equations 
The problem a t  hand is a special case of the more general one of determining 

the steady-state rate of heat transfer from a given surface, on which the tem- 
perature has prescribed values, to an adjacent fluid stream in laminar boundary- 
layer flow. In  particular, our analysis will be restricted further to incompressible, 
‘ constant-property ’ flows and to systems with either planar or axisymmetric 
velocity and temperature fields for which in principle the velocity profile can 
be specified a priori in terms of a stream function Urn L@(x, y ) ,  where x and y ,  
the independent variables, are the usual dimensionless ‘ boundary-layer ’ co- 
ordinates, with XL and y L  measuring, respectively, the distance along and normal 
to the surface (at y = 0). (We have chosen the quantities L and U, t o  represent 
here a characteristic length and a characteristic velocity for the system; also, 
we shall suppose in what follows that, as is the case with @, x and y ,  all the other 
pertinent variables of the problem have been rendered dimensionless by means 
of L, U, and some characteristic temperature difference AT.) Hence, we shall 
suppose that @(x, y) is a known function and, without loss of generality, that 
$(x,O) = 0. Moreover, since we are considering systems with a large charac- 
teristic Reynolds number, Re = U,L/v 

(where v is the kinematic viscosity of the fluid), we can simplify the problem still 
further by restoring to laminar boundary-layer theory, according to which the 
stream function is given asymptotically by 

in the region where the co-ordinate ij, defined by 
@(x, y )  = Re3 [$(x, ij) + O(Re-*)], for Re -+ 00, (2.1) 

4 = Rety ,  (2.2) 
is O(l) ,  i.e. lies inside the viscous layer. Furthermore, we shall suppose that the 
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function F i n  (2.1) does not depend explicitly on Re and that it can be determined 
in principle from the standard boundary-layer equations (Meksyn 1961). 

As for the temperature field, O(x, y) say, we shall suppose as is customary that, 
inside the viscous layer, 

where 8(r,  ?j) satisfies the equation 

e = B(x, y) + O(Re-i), 

(3.3) 

in which, of course, the presence of extraneous heat sources has been excluded. 
The function yo(x) appearing here is to be set identicalIy equal to unity for planar 
flows and equal to the (dimensionless) radius of rotation of the heat-transfer 
surfa,ce in the case of axisymmetric flows (Acrivos & Goddard 1965). 

Now, since our objective here is to derive expansions of the temperature field 
for large or small Pr, which will be accurate to terms of O(Re-4) in Re (although 
perhaps not uniformly so for all x), equation (2.3) together with the appropriate 
boundary conditions will serve as our point of departure. In  the problem of 
interest, the temperature assumes prescribed surface values B,(x) at ij = 0 and 
is taken to vanish far from the surface. Accordingly, we adopt the boundary 
conditions: 

and 

limB(x, 4)  = e,(x), for 2 > 0, 
i i - 0  

(2.4) 

where the point x = 0 will denote the leading edge or forward stagnation point 
of the surface in question. 

In  the case of small Pr the set of equations (2.3) to (2.5) is not sufficient to 
describe forced convection, nor is i t  permissible in general to overlook the 
possibility of a singularity at  x = 0; this matter though will be taken up again in 
$4 and in Appendix 1. First of all, we consider the expansions for large Pr, 
which are somewhat simpler in structure. 

3. The asymptotic expansion for heat transfer at large Pr 
To generate the desired asymptotic expansion we shall resort to t.he technique 

discussed in our earlier paper (Acrivos & Goddard 1965). That is, we shall postu- 
late at  first a Taylor series expansion for the stream function near the surface; 
then, after introducing the appropriate ‘stretching ’ transformation of the surface- 
normal co-ordinate, we shall develop formally an asymptotic expansion for the 
differential operator governing the convection; and, finally, by employing a 
standard perturbation analysis, we shall derive a corresponding expansion for 
the temperature field as well as a sequence of differential equations for succes- 
sively higher-order terms in this expansion. 

It should be strongly emphasized at  this point that there is no a priori 
guarantee that any such formal expansion technique will yield asymptotic 
expansions which will remain uniformly valid under all circumstances. However, 
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as will be discussed below, it is usually possible in any specific example to de- 
termine aposteriori the necessary conditions for the validity of at  least the first- 
order correction to  the asymptotic heat transfer rate, merely by employing the 
general closed-form expression to be derived here. 

Proceeding then in the manner outlined above, we suppose, for generality, 
that the function $(x, ?j) of (2.1) has an expansion near Cj = 0 of the form 

- 
Ilr(x, Y) = Fn(x) Y ~ + $ ~ ( ~ ) Y P + o ( ? ~ P ) ,  (3.1) 

where p and n, in general equal to 3 and 2, respectively, are integers such that 
p > n 2 0. Next, with the transformation (cf. Morgan et al. 1956) 

g n = (pr)l/(n+U ~j = (Pr)l/(rb+l) (Re)& y 

P = ( ~ r ) ( l - n ) ’ ( l + n ) [ F ~  + ( P Y ) - ~ P ~  + o ( ~ r - r ) ] ,  

(3.2) 

we can ‘expand’ the operator 

where r = ( p - n ) / b +  1)  ( >  01, 

and Po and Pl are the differential operators 

of (2.3) in the form 

(3.3) 

Po = n$,yn-la/ax - $;ynalay - yo a 1 y 
(3.4) 

and Fl = p$~yp--la/ax-$~ypa/ay. 2 a  2} 

To simplify the notation in equation (3.4), we have written @, and $p for p, 
and gp,  respectively, and y for gn; also we have inserted primes to denote dif- 
ferentiation with respect to x. 

Now, in view of the form of (3.3), we assume that e has the asymptotic expan- 
sion 

where a0 and g1 do not depend explicitly on Pr. Then, after substituting equations 
(3.4) and (3.5) into equations (2.3)-(2.4) and equating coefficients of like powers 
of Pr, we find that the functions a0 and a1 must satisfy the differential equations 

- 
e(x, y; Pr) = Bo(x, ~j,) + (Pr)+B1(x, yn) +o(Pr-‘), (3.5) 

Foao = 0, 

Fogl = -Plea 
I ..................... 

and the boundary conditions \ 
limBi(x, y) = 

21-0 (i = 1,  ...), 

Iirnei(x, y) = O ( i  = O,1, ... 
21-00 

where, once again, we have replaced 3, by y. Similarly, by retaining only the 
first term of (3.1), we have from equation (2.5) that 

limBi(x, y) = 0, i = 0,1 ,  .. ., for all $.,(x) yn > 0, (3.7) 
s+o 

which completes our formulation of the expansion problem. Without dwelling 
at this point on questions regarding the validity of the above procedure, we 
consider now the actual solution for the first ‘correction ’ term in (3.5). 
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It is evident first of all that the equations for ei in (3.6) and (3.7) are special 

i cases of the system: Foe = q 
with lime = h (for x > 0 ) ,  

lime = 0, 

I/-0 

I /+w 

where q may be considered a known function of x and y, and h a known function 
of x. It has already been shown earlier however (Acrivos & Goddard 1965), that 
the form of the differential operator Po in (3.4) can be greatly simplified by 
introducing as new independent variables 

(3.9) 

and that the general solution to (3.8) can be expressed as 

= w, 2 )  + X ( t ,  21, (3.10) 

where 

and 

The functions h and q are those appearing in (3.8), while 

(3.11) 

(3.12) 

is the Jacobian of the transformation (3.9), and G,(t, z ;  t*, z*) is the appropriate 
Green's function for the differential operator Po, all being expressed as functions 
of z and t. Thus, we can employ here the expression for Go(t, z ;  t*, z*) given by 
Rutton (1943) and by Acrivos & Goddard (1965) to write down immediately the 
solutions to the problem at hand. In particular, we obtain formally for the 

- 

h(t) = 8,(x) 

first two terms of (3.5) 

with 

and 

with 

- 
8, = A(t ,  Z )  

q(t ,z)  = -P10, 

(3.13) 

(3.14) 

which follow by inspection of (3.6), (3.7), (3.8) and (3.10). 
Hence, for a given surface-temperature variation O,(x), we have at  our disposal 

a general formula enabling us to compute in principle the first correction term to 
the asymptotic heat transfer rate. As was done earlier, however (Acrivos & 
Goddard 1965), we can, without loss of generality, put our result in a more 
explicit and useful form by applying it to the simpler problem in which the sur- 
face temperature e , ( ~ )  varies as a step-function 

h(t)  = O,(X) = H(t  - t*) = H ( x -  x*), (3.15) 

H ( s )  denoting the Heaviside function. This procedure will yield 'fundamental ' 
solutions to (3.6), Bo(x, y ;  x*) and G1(x, y ;  x*), say, which vanish identically 
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for x < x* and from which we can construct the solutions for more general 
variations of the surface temperature by invoking the superposition principle 
for linear equations. As pointed out before (Acrivos & Goddard 1965). the first 
of these fundamental solutions is simply 

where 
&n+l) < =  , 7 = t- t*,  t* = t(x*), 

(n+ 1) .\i. 

(3.16) 

r(v) denotes the gamma function, and where I’(v,s) is the complement of the 
incomplete gamma function (with r ( v ,  0 )  = r(v)). 

With go given by (3.16), we can now derive a corresponding explicit expression 
for the function 8, of (3.14). First of all, we note that, in terms of the co-ordinates 
z and t ,  the operator Fl of (3.4) becomes 

F, = J- lbR( t )  z.-’(a/at) -R’(t) x” (a /az) ]  (3.17) 

where 

and where the prime denotes differentiation with respect to t. It follows then 
that the function q of (3.14) can be expressed as 

R(t) = $p (4 / [n@n(x)l”’”, 

with A$)(T, t * )  = a [ ~ p / ( ~ + l )  R(T + t * ) ] / h .  (3.18) 

Finally, by making use of equations (4.16) and (A 1.4) of the previous a’rticle 
(Acrivos & Goddard 1965) we can show that 

where S$) is given by 

- 
8, = B,(x,y; x*) = X$ ’ ( t , z ;  t * ) ,  

A g )  is the function defined by (3.18), and ,F1 denotes a confluent hypergeometric 
function. 

Thus, for a given surface temperature distribution, we can use equation 
(3.19); together with the linear superposition principle to compute the first 
correction term to the asymptotic temperature profile for Pr -+ co. Of somewhat 
more interest, however, is the corresponding contribution to the heat-transfer 
rate, for which an asymptotic series can be derived readily from (3.2)) (3.2), 
(3.5) and (3.9). Expressing this in terms of a ‘fundamental’ Nusselt number 
for heat transfer, we have 

to terms of O(Re-g). 
- 
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The first term in (3.20), already well known, is given simply by 

(3.31) 

whereas the second term, which constitutes the final and most important con- 
tribution of this section of our paper, becomes 

The steps leading from equation (3.19) to (3.23) have been presented earlier 
(Acrivos & Goddard 1965). 

In closing here we should point out that, while it appears difficult to formulate 
rigorously the most general conditions for the uniform validity of (3.20), it  seems 
logical to suppose that the correctness of our expansion should depend mainly 
on the analytic character of Pn(x) and PP(x) in (3.1). For example, we woulc! 
certainly not expect (3.20) to remain valid in theneighbourhoodof a point x = xo 
where $9/@n -+ co in a strongly singular fashion; in fact, we can show rather 
easily, by (3.17), (3.18), and (3.22), that if 

- _  

- - 
li., NCL(X , , -X) ' ,  $p N b(xo-x)/' 

for x + xo (x* < x < xo), where a, 6 ,  v and ,u are constants and v > 0, we must 
require that 

( p - l ) n + p  > ( v - l ) p + v  

if the ratio of the second term of (3.20) t o  the first is 60 remain bounded near 
x = xo. This condition reduces to 

3p+1 > 4v 

when, as is usually the case, n = 2 and p = 3. In  contrast, the expansion for the 
total heat flux over 0 < x < xo, which is obtained by integrating (3.20), should 
remain valid to terms of O(Pr+), as long as 

p n ( n + l ) + ( n + v )  + n p ( l - v )  > 0 

which becomes 6p+ 8 > 5v when n = 2 and p = 3. Finally, it  should also be 
stressed that, in certain stagnant-fluid regions, where $n and all higher-order 
coefficients in (3.1) vanish or near points of surface temperature discontinuity 
we should not expect (3.20) to provide in general a valid approximation to the 
heat-transfer rate, since in such cases equation (2.3), i.e. the boundary-layer 
form of the exact energy equation, ceases t o  apply. Thus, it should be remembered 
that, by itself, (3.20) will generally represent a valid approximation to the heat- 
transfer rate only if the contribution of the terms which were neglected in (2.3) 
remain much smaller than the term O(Pr-') that was retained in the expansion 
of (3.5). 

4. Expansions for small Pr 
The mathematical technique outlined in the preceding section can also be 

applied with some modification to the problem of deriving small Pr expansions 
for heat transfer. As stated in the introduction, this problem has already been 
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considered by Morgan et al. (1958). However, our approach will differ somewhat 
from theirs in that we shall treat the expansion problem explicitly as a singular- 
perturbation scheme involving two distinct expansions with different regions of 
validity, namely, an ‘outer expansion’ for the temperature field in the region 
outside the momentum layer, and an ‘inner-expansion ’, valid ins ide this layer. 
(For a discussion of this technique and its application to other problems in fluid 
mechanics, see Proudman & Pearson 1957 or Taylor & Acrivos 1964.) To some 
extent, our treatment will facilitate a systematic derivation of additional correc- 
tion terms to the results given previously. 

4.1. The outer expansion 

In  order to derive this expansion, we have to consider first the analytic form 
of the stream function in the region outside the momentum boundary layer. 
Now, according to boundary-layer theory we can state formally that, in this 
region, 

where Y(O) is the stream function for the exterior potential flow and ‘€Q) is the 
perturbation on this flow due to the ‘ displacement ’ by the viscous layer (Morgan 
et al. 1958). Furthermore, since the limiting form of (4.1)) for y --f 0, must match 
with the limiting form of (2.1)) for j -+ 00, to terms of the same order in Re, this 
requires that 

and 

Here Y”j0)(x) (assumed to be non-negative) is the first coefficient of the Taylor 
series expansion of Y(O), say 

I&%, y) = Y(O)(x, y) + (Re)-* ‘ V ) ( x ,  y) + O(Re-l) ,  (4.1) 

Y ( O ) ( X , O )  = 0 

Y , j l ) ( x )  = Y(1) (x, 0) = lim [&x, g)  - ij\r$O)(x)]. 
def 

(4.2) 
g+ca 

Y(0) (qy) = yYjO)(x)+y2YdO)(X)+... (4.3) 

Y ( 1 ) ( X ’  y) = Y,j”(x) + yYp(x) + . . .. (4.4) 

andY$)(x) is the first coefficient in the expansion of W1), the latter being generally, 
of the form, 

With the behaviour of the stream function thus specified, and under the 
assumption that P e  is large, we can now derive a double expansion of the tempera- 
ture field for the region outside the momentum boundary layer by employing a 
small P r  expansion plus a boundary-layer analysis based on P e ,  of the type dis- 
cussed by Acrivos & Goddard (1965). Thus 

6’ = ~,jO)(z, yl) + (Pr )+  O,jl)(z, yl) + ( P r )  Bd2)(.r, yl) + O(PrQ) 

+ (Pe)-h [Bjo)(x, yl) + O(Pr+]+ O(Pe-1) (4.5) 

for P e  --f m, P r  + 0, where the 199) depend only on x and on the variable 
def 

y1 = (Pe )gy  = (Pr)h2/ (4.6) 

(cf. equation (8.2)). This requires that the functions 88)(x,yl) i = 0,1,2,  ... 
satisfy the differential equation 
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where Pdo) and Pdl) are the differential operators: 

(4.5) 

Again the functions Ylo) and YJ1) are the leading coefficients in the expansions 
(4.3) and (4.4), and the primes denote differentiation with respect to x.  

On inspection of (4.5) it becomes evident that the function 0J0) represents the 
limiting form of the temperature field for P r  -+ 0 and Pe -+ 03 and that the 
B $ ) ( i  = 1,2, . ..), are higher-order correction terms in P r  which are due to the 
‘out-flow’ produced by the viscous layer. In  contrast, the term @lo) in (4.5) 
represents a correction for the effect of surface curvature, the derivation of 
which will be deferred to Appendix 1. It should be noted that the terms 
indicated explicitly in the expansion (4.5) are subject to a posteriori verification 
since they will be derived below, whereas the use of 0-symbols for terms not 
appearing explicitly is a t  this point only a formalism, which we have employed 
here temporarily to elucidate the structure of the perturbation scheme. Without 
a more detailed analysis of these higher-order terms it will be necessary to 
replace the 0-symbols by the appropriate o-symbols in the fhal result for the 
heat transfer rate to be derived later on. 

Now, for the boundary-value problem under consideration, we require that 
the functions SF) ( x ,  yl) satisfy the conditions 

1 PJO) = Y ~ O ) ( ~ ) a / a x - ~ ~ o ) ’ ( ~ ) y ~ a / a y , - ~ ~ a 2 / i i y ~ ,  

P 0 (1) = - Y J ~ ) ’ ( ~ )  a/ayl. 

for i , j  = 0,1,2,  . ... However, since the expansion (4.5) is valid only in the region 
outside the viscous Iayer (g  9 l), the appropriate boundary conditions on the 
SF) at y1 = 0 must be determined by matching (4.5) with an inner expansion 
whose form is to be considered next. 

4.2. The inner expansion 

To derive the inner expansion we shall adopt here a method similar to that 
first employed by Morgan et al. (1958). Before proceeding, however, we wish to 
emphasize a t  the outset that the expansion thus obtained will be valid only for 
smooth differentiable surface temperature variations. This is so because, aside 
from the usual defect of the boundary-layer approximations due to the omission 
of ‘diffusion ’ terms involving a2/ax2, there is asecond, more serious defect inherent 
in the small Pr-expansion which results from neglecting, as Pr --f 0,  ‘convection ’ 
terms involving a/iix. As it turns out, this is tantamount to assuming that, for 
P r  -+ 0, the temperature is essentially constant across the viscous layer, an 
assumption which appears plausible since this layer is asymptotically much 
thinner than the thermal layer. Nevertheless, although this condition is realized 
over most of the heat transfer surface, the reverse will always be true, no matter 
how small Pr,  at  the leading edge of a thermal layer (i.e. at  a discontinuity 
in surface temperature) if this is located downstream from the leading edge of 
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the viscous layer. I n  fact, the ‘large Pr’ expansions discussed in (4.2) should 
become applicable near such points, as is indicated in § 5.1 below. 

With the above reservation in mind we find, by a slight extension of the tech- 
nique of Morgan et ccl. to account for surface curvature, that inside the viscous 
layer 

6 = BJO)(x, j) + (Pr); BJl)(x, g) + (Pr )  GJ2)(x, i j )  + (Pr); 8d3) (x, ij) 

+O(Pr2) + (Pe)-g[(Pr)*8i0)(x, ij)+O(Pr)]+O(Pe-l), (4.10) 

where the functional coefficients By) (x, ?j), which in contra-distinction to (4.5) 
have been provided with overbars, are functions of x and i j  only. The terms 
here of order zero in Pe represent merely an expansion in Pr for the function 8 
of (2.3), the functional coefficients of which, e$i), must satisfy the following 
equations, derived essentially from (2.3) 

(4.11) I 0, for i = O , l ,  a28 (i) 
2 - aB$i-z) a$ aBp-2, 

for i = 2,3,  ..., 7 0  8-2 - - _ _ _ _ _ _  
ag ax ax ag Y 

where 5 is the variable of (2.2). The appropriate differential equation for the 
function 

Again, as with (4.5), we should emphasize that the use of 0-symbols for terms 
not appearing explicitly in (4.10) is merely a formal device, and that these terms 
will be replaced by the appropriate o-symbols later on in the analysis. 

Finally, the boundary conditions on the q!) at ij = 0 follow directly from (4.10) 

the correction for surface curvature, is given in Appendix 1.  

and (2.4), 
(4.12) 

while the necessary conditions a t  ij = 00 can be determined, as we now show, by 
matching (4.10) to the outer expansion (4.5). 

4.3. Matching of the expansions 

To derive the necessary additional boundary conditions for the functions in the 
expansions (4.5) and (4.10), we shall require that the limiting form of (4.10) for 
j j  -+ co join analytically with the limiting form of (4.5) for yl->O to terms of the 
mme order in both Pr and Pe. For this purpose, it  will be necessary to attribute 
an analytic character to the functions 07) (x, yl), in which case they may be as- 
sumed to have Taylor series of the form 

with finite differential coefficients. With this assumption, the limi’cing form of the 
outer cxpansion (4.5) near y1 = 0 is readily found to be 
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on making use of (4.6). Hence, by matching this series in the prescribed manner 
to that of (4.10) we obtain that 

1 

So"J)(x, 0) = lim 8$"' (x, y), 
8-t m 

..................................................................... 
a'nd e p  ( x ,  0) = 0, 

..................................................................... J 
The further requirement that the limits on the right-hand side of these equations 
exist provides all the necessary conditions on the 8F) at jj = 00 and simultaneously 
yields boundary values for the 0:) at y1 = 0. 

4.4. The solution for the inner region 

The solution for the terms indicated explicitly in (4.10) follows now in a rather 
straightforward manner due to the simplicity of the differential equations of 
(4.11). Thus, the first equations of (4.11) and (4.12) imply that 

BJO)(x, q )  = O,(X)  (4.15) 

up to an additive, linear, homogeneous function of which, however, must be 
taken as zero in order for the limit on the right-hand side of the first equation of 
(4.14) to exist. Whence, the boundary condition on B$')(x, y l )  at y1 = 0 follows 
immediately, e p ( x ,  0) = O,(x). (4.16) 

This result together with equations (4.7) and (4.9) suffices for the determination 
of Bdo)(x, yl), which, on account of the secondequationof (4.14), canbeusedinturn 
to yield the necessary conditions on ad1)(%, y) as ij -+ 00 as well as the boundary 
value OJl)(x, 0). This procedure can be repeated of course for the higher-order 
terms. 

Without elaborating on the details, which are essentially algebraic in nature, 
we shall merely summarize the results which one obtains by continuing in the 
above fashion. Thus, by considering the remaining terms in (4.5) and (4.10) of 
order zero in Pe, we find for the terms of O(Prh) that 

- 

with op(., 0) = 0, 
and for those of O(Pr) ,  

o'(x) 1 u A$(., s)  ds 
- aep y2 azgJ0) 
fq"(X,?j) = y - ( x , o ) + - ~ ( x , o ) + - -  

a31 2 8Yl Yo@) 0 

with 

where we have defined 

(4.17) 

(4.18) 

(4.1 8 a )  

(4.19) 
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We could have written down also the boundary value 19$3)(x, 0 ) ,  but this would 
have been superfluous for the present purposes. Instead, of more interest are 
the y-derivatives of 88) at = 0. Those of 8J1) and ad2) can be obtained immediately 
from (4.17) and (4.18), while, because of (4.20), 

In  addition it is shown in Appendix 1 that the term of O(Pe-4) in (4.5) is related 
to the term of O(Pr4Pe-4) in (4.10) by 

(4.22) 

while, on account of (4.14), the boundary value 0io) (x, 0) must be zero. In  closing 
here, we should note further that (4.18) is equivalent to the result already given 
by Morgan et aZ. (1958) for planar flows. 

- aep e p  ( 2 , ~ )  = y - (x ,o) ,  
ay1 

4.5. The solution for the outer region 

One can now determine the coefficients 19y) in the outer expansion (4.5) using as 
boundary conditions (4.17), (4.18) and the last equation of (4.14). In  fact, 
we have only to observe that the equations of (4.7), and the operator Pdo) of (4.8) 
are, respectively, special cases (n = 1) of the system (3.8), and of the operator 
Po of (3.4). Therefore, exactly as was done for the coefficients in the expansions 
of $ 3, we can again employ the Green's function of Acrivos & Goddard (1965) 
(with n = 1, now) in conjunction with equations (3.11) to yield formal solutions 
for the OF). 

Adopting then the same technique as in $3, we shall suppose next that the 
surface temperature is given by the step-function of (3.15) and shall thereby 
derive ' fundamental ' solutions to the boundary-value problem under considera- 
tion. Thus, the leading term in (4.13) becomes merely the special case of (3.16) 
corresponding to  n = 1, 

(4.23) 1 Sdo)(x, yl) = I?($, g2))lr(& = erfc 

with (as(o)/a2),,, = - (7~7)-4 
where erfc denotes the complementary error function. Also, the variables 

5 = 42/79 (4.24) 

and 7 are those given by (3.16), and the variables z and t are to be obtained from 
equations (3.9) by taking n = 1 and $1 = 'Pio). In  other words, 

(4.25) 

where Yio) is, of course, the functional coefficient appearing in (4.3) and (4.8). 
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Having thus found 6J0) it is possible to specify the corresponding non-homo- 
geneous term in the differential equation of (4.7) for 6J1), and to proceed with the 
solution for this function. In  particular, it  follows from (4.7), (4.9) and (4.17) that 
SJ1) is given by the integral A of (3.11) with 

q = - p (1) OJO) 
0 

in which the operator Pi1), defined by (4.8), can be expressed simply as 

(4.26) 

where z and tare given by (4.25), J is the Jacobian of (3.12)' and 

R(t) = YJl)(x), (4.27) 

YJ1) being the first term in the expansion (4.4). It becomes evident therefore that 
(4.26) and (4.27) are merely special cases of (3.17) withp = 0. In addition, since 
the expression for OJo) as given by (4.23) is a special case of (3.16), it follows by 

(4.28) 
taking 

which is in turn a special case of (3.18), that 

A1°)(7, t " )  %!(7 + $*)/a7 

6J" = X$O) ( t ,  2 ;  t*), 

where Xi0) is the integral (3.19), with n = 1, p = 0. Moreover, since the confluent 
hypergeometric function which occurs in that integral reduces to the form 

in which erf denotes the error function, 

with (4.30) 

where A$O)is given by (4.28). 
With 6Jl) specified now by (4.29)' we are in a position to solve the appropriate 

differential equation (4.7) for the next higher-order term OJ2)'. Since this function 
is to satisfy the boundary conditions (4.9) and (4.18), the formal solution can again 
be written down immediately as a sum of the general integrals in (3.11), i.e. 

6J2) = x + A  with q = - Pd1)6J1), (4.31) 

and h(t) given by (4.18a). However, it will be noted that ( 4 . 1 8 ~ )  contains the 
first derivative of the surface temperature, and, since we have chosen to treat 
the problem with a surface temperature having the step-function behaviour of 
(3.15), this derivative will not exist iii the ordinary sense, a difficulty already 
foreseen above. While we can temporarily overcome the mathematical aspect 
of this difficulty by employing 'generalized' functions, the results so derived will 
be meaningful ultimately only if interpreted as linear operators, to be applied 
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according to the linear superposition principle in those cases where the surface 
temperature is differentiable. This serves to re-emphasize the fact that, unless 
the surface temperature does indeed vary smoothly, the expansions derived here 
are highly singular in nature. With this understanding, we can express (4.18a,) as 

@)(X, 0 )  = h(t) = 8(t- t * )  M(t*), (4.32) 

where 6 denotes the Dirac delta function and 

r m  

M ( t )  = YjO)(x:) A~b(x:, j) dq, 
J O  

(4.33) 

t and x: being related by (4.25). Thus, the first contribution to OJZ) in (4.31) is 
found by substituting the function h(t)  of equation (4.32) into the integral x 
of (3.11)) yielding (symbolically) 

z 
e--22/47 M(t*) H ( t  - t* ) ,  (4.34) 

where we have used the appropriate expression for the Green’s function Go, 
which was given earlier by Acrivos & Goddard (1965). 

It can be verified readily that, (4.34) does indeed have the delta-function 
behaviour at z = 0 required by (4.32), and that furthermore, 

(4.35) 

As one might have anticipated, the second contribution to Od2), which is given 
by the integral A of (3.11) with q taken as indicated in (4.31), turns out to have a 
rather complicated form. However, we are mainly interested in the contribu- 
tion of this term to the surface-normal derivative of OJ2)’, for which we can obtain 
a much simpler result. In  particular, if we assume that it is permissible to ex- 
change the order of integration and differentiation with respect to z in (3.11), 
we find, again using the expression for the Green’s function given by Acrivos 
& Goddard (1965)’ that 

($),=o = -$d:/ol Jol Aj0)(h’7, t*) AjO)(h’h~, t*)f(h, A‘) dh‘dh, (4.36) 

and 

Thus, in conclusion, we have by (4.31) that 

(aOd2),’ax),,o = ( a ~ / a z ) ~ = o  + (aA/az),,O, (4.37) 

where the functions (of t  and t*) on the right-hand side are now completely 
specified by (4.35) and (4.36). 
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4.6. The expansion for the rate of hea,t transfer 

By means of the results of $54.1-4.5, we shall now derive the desired asymptotic 
expansion for the heat-transfer rate. Thus, expressing this as before, in terms of 
a 'fundamental ' Nusselt number, we obtain from the inner expansion (4.19) that 

N ~ ( ~ ;  x*) = - (ae/ay),=, 
= - (Pe)*([8dl)/aij + PrB a8dS)/ag +Pr aBi3)/ajj + o(Pr)]+, 

+ Pe-: [aBf3)/ajj],-,, + o( Pe-4 I}, 
where, in accordance with our earlier remarks regarding the significance of the 
symbols 0 we have replaced these by the appropriate o-symbols. Now, by 
employing (4.17) to (4.21), (4.27) and (4.33) we can expressthe preceding result as 

F(x;  x*) = (2t/Re))Nu(x; x*)/Y~O)(x) = (Pr)*(K,f')(t; t*) +Pr*Kdl)(t; t*) 
def 

+PrKd2)(t; t*)+o(Pr)+Pe-4Klo)(t; t*)+o(Pe-g)) (4.38) 

for Pr -> 0,  Pe 4 co, where 

h ' d O ) ( t ;  t * )  = 

K$l)(t;  t*) = 

Kd2)(t; t*) = 

and K$O)(t; t*) = 

(4.39) a M( t )  H(t - t*) 
at {,(t - t*)p (2t):  [ - (7?)z=o - + - ( 

With the exception of the last equation, the definitions of the functions appear- 
ing on the right-hand side of the equations in (4.39) can be found by referring to 
(4.30), (4.33) and (4.37). In  Appendix 1 an expression is derived giving Kf') 
and, thus, the correction term for surface curvature of O(Pr*Pe-i-) in (4.38), 
which, as is shown there, vanishes identically for planar flows. The factor (2t)) 
has been included arbitrarily in (4.38) and (4.39), in order that, as is to be shown 
in $5 .2  below, the functions K(t; t*) be expressible simply as functions of (t/t*) 
in the case of 'similarity' flows. 

We can readily deduce now that the term of O(Pr) in (4.38) is in essence equiva- 
lent to the result already given by Morgan et al. (1958) for planar flows. The 
additional terms derived here would permit one to compute in principle the heat 
transfer rate, for Pr < 1 and Pe 9 1, up to terms which are formally either 
O(Pri), O(Pe-l) or O(Re-4) = O(Pr*Pe-+) relative to the leading term. Of course, 
in order to calculate the term O(Pr&Pe-*) we would require the O(Re-4) term in 
the expansion of the stream function (3.1) which is not provided generally by 
the usual laminar ' boundary-layer ' approximation. 

In  closing here, we should summarize the limitations of the small Pr expansion, 
equation (4.38), for the rate of heat transfer. First of all, just as with the large 
P r  expansion of the preceding section, both (4.5) and (4.10) are subject to the 
usual defect of boundary-layer expansions arising from the omission, in arriving 
at  (2.3), of 'diffusion' terms involving a2/ax2. As a consequence, the expression 
for the O(Pe-$Prh) term ceases to apply in the neighbourhood of a point x = x*, 

23 Fluid Mech. 24 
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where the surface temperature is discontinuous. Near such a point, the expansion 
(4.38) would have to be replaced by another expansion, valid in the singular region 

Ix-x*l = O(Pe-4). 

Thus, whereas the term of O(Pe-*Pr*) in (4.38) vanishes identically for planar 
flows with smoothly varying surface temperatures, in the case of a discontinuous 
surface temperature distribution there would be in general a contribution to the 
total heat transfer rate of O(Pe-8) relative to the first term. However, in addition 
to this difficulty, there is also, as indicated earlier, the more serious defect 
in the small Pr expansion arising from the omission inside the viscous layer of 
convection terms involving ajax. Since these terms would become important 
near a point of discontinuity in the surface temperature, the terms in (4.38) 
of order zero in Pe would not remain valid in general near such points. Thus, it  
should be emphasized again that the surface temperature discontinuity at  
x = x*, which was introduced in this section, is merely a mathematical artifice, 
it being understood that (4.38) is to be used only in conjunction with differentiable 
surface temperature distributions. 

As a final remark, we note that the appropriate asymptotic expansions for 
heat transfer with arbitrary surface temperatures O,(x) are to be constructed 
from the asymptotic expansions of both $8 3 and 4 according to the superposition 
formula 

(4.40) 
The first integral is of the Stieltjes type, with the second equality holding when- 
ever e,(x) is differentiable. As indicated above, the results of 94 are valid only 
when this latter condition is realized. 

5. Application to similarity flows 
For both large and small Pr, the results derived above can be simplified greatly 

for 'similar' boundary-layer flows. In  this case, the potential-flow velocity at  the 
surface, say U ( x ) ,  is given by U ( x )  = t p ,  
where 

(5.1) 

(5.2) 

and p is a constant. The variable t,, which is identical to that defined by (4.25), 
has also been used in Gortler's tra'nsformation (Meksyn 1961). For flows of the 
above type, the boundary-layer stream function of (5.1) can then be expressed 
as 

where 

and where f (7) satisfies the well-known Falkner-Skan equation 

with f ' = f = O  a t  r = O ,  

- 

(5.3) 1 k(x, y) = (Wm, 
7 = Z, / (St , )~,  XI = Y$O)(X) y = yo(x) U ( x )  y, 

(5.4) 

y+fy+p(l-fz)  = 0, 

f '+1  as r+co. 
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One will remember that in the case of planar flow (yo = 1)  the equations of (5.1) 
to (5.4) govern the symmetric boundary-layer flow past a wedge-shaped surface 
with included angle Pn. 

5.1. Expansions for large Pr 

For a non-separating boundary-layer flow past a solid surface and with a noii- 
zero streamwise pressure gradient, n = 2 and p = 3 in the stream function ex- 
pansion of (3.1). One obtains 

The function f is, of course, that of (5.3), and the superscript zero onfwill denote 
henceforth the value of the derivative indicated by an appropriate number of 
primes a t  7;1 = 0. 

Equation (3.21) yields immediately the first term in the asymptotic series 
(3.20), and by the first equation of (5 .5 ) ,  one sees that the pertinent variable t ,  
defined by (3.10) with n = 2 and ~2 = p 2 ( x ) ,  is related to t ,  of (5.2) by 

Hence, the second term of (3.20), to be determined by (3.22), can be simplified 
as follows. Noting first that the function R(t) of (3.17) reduces, by (5.5) and (5.6), 
to 

we obtain for the function AA3) of (3.18) simply 

R(t) = - +P [2/3(f;)4t]+ 

A$3)(7, t*) = - +p[2/3(f;)4]+[(7+t*)-+- +7(7+t*)--9]. 

The substitution of this function into (3.22) gives rise to integrals which can be 
expressed in terms of the hypergeometric function, according to the relation 

valid for v + p + 2  > - y  > 0, 7/t* > - 1 (Erdelyi et a,Z. 1954 H.T.F., vol. 2). 
Thus, we find for the desired correction term 

(a~,/az),=, = --- l loP( f ; ) - i  (2t,)-$ ( 1  + srZ*)j 

where def 
fl,* = T/t* = t/t* - 1 = ( t l / t f )9-  1 ( 2  o), 

with tT and t* corresponding to the point x = x* of the step discontinuity in the 
surface temperature. 

23-2 



356 J .  D.  Goddard and Andreas Acrivos 

For 6; < 1 (i.e. for t < 2t*) the hypergeometric functions in (5.8) could be 
calculated in principle by means of the Gaussian series 

a b z a ( a . + l ) b ( b + l )  22 
c l !  C(Cf1) 2 !  

2F,(a,b; c ;  2 )  = 1 + -L -+ -+ ... , 

which converges absolutely for 1x1 < 1. However, it is more expedient to use 
the analytic continuation 

(5.9) ,F,(a,b; c ; 2 )  = (1-z)-azF1(a,c-b; c ;  2 / (x -1 ) )  

to construct a power series in terms of a new variable 

t2 = gj/( 1 + 6;) = 7/t  = 1 - t;/t2 = 1 - (t;/tl)$, (5.10) 

which is less than unity for all tl 2 tT > 0. With this transformation on (5.8), the 
asymptotic expansion (3.30) can be expressed as 

where the function F ( x ;  x*) is identical to that already defined by (4.38). 
It should be noted here that, in the limits t: = 0 or t, + co, (5.11) reduces to 

the first two terms of the series given by Meksyn (1961) and by Merk (1959) 
for the case of a uniform surface temperature. This result can be deduced most 
readily by using the well-known relation 

2 ~ , ( ~ , b ; ~ ; i )  = r ( c ) r ( c -a -b ) / r ( c -a ) r ( c -b ) ,  for c - + - i ,  - 2 , . . . , c >  a+b. 

(5.12) 

It is of further interest to point out that the correction term in (5.11) to  the 
asymptotic Nusselt number vanishes at  the jump discontinuity in surface 
temperature, t ,  = t f  (x = x*) where E2 = 0. This is a mathematical statement of 
the fact that Lighthill’s formula for the asymptotic rate of heat transfer should 
become exact, even for small Pr, at the leading edge of a thermal boundary layer 
which originates downstream from the leading edge of the viscous layer, a 
result anticipated earlier, in 94.2. 

It is also of some value to inquire now as to the form of the series (5.11) in the 
case of (non-separating) flows with zero pressure gradient, which, in the planar 
case, corresponds to flow past a flat plate at zero incidence. Here one has p = 0 
so that the correction term of O(Pr-*) relative to the asymptotic Nusselt number 
vanishesfrom (5.11). However, inorder to obtain thenext higher-order correction 
term it suffices to take p = 5 in equation (3.1), with 
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thelatterequalitybeing a consequence of (5.4). Thus, instead of (5.1 l) ,  we obtain, 
on setting ,8 = 0 in the preceeding relation, 

since the hypergeometric functions involved reduce here to the simple ‘ logarith- 
mic ’ form. The remarks of the preceding paragraph are, of course, also applicable 
to the results of (5.13). 

As a last application of the large-Pr expansions, we consider the case of a 
separating flow where fi = 0 which, as is well known, occurs for 

p = -0*1988.... (5.14) 

In  this instance, the formula (5.11) becomes singular due to the fact that the 
expression for the first term of (3.1) and, consequently, for the asymptotic Nus- 
selt number, is no longer correct. However, the correct expansion can again be 
derived readily by the present method. Thus, since the first two non-vanishing 
derivatives of at Tj = 0 are now found to be the third and the seventh, we take 
n = 3 and p = 7 in (3.1), with $3(x) given by the second equation of (5.5) and 

the last equality resulting from (5.4). The appropriate form of the t-variable 
of (3.9) is now seen to be 

t = 1; [3$3(8)]fr Y o ( S )  d S  = $( - 4p)S (%I)). 

Therefore the functions R and A of (3.17) and (3.18) become 

R(t) = 2(3P-2)P2(2t1)-5/7!(-P/3)f = 6(3P-2)t-l /7! 

Ad7)( 7, t * ) = 6 (3p - 2) [;Ti( 7 + t*)-’ - 7%( 7 + t*)-2] /7 ! . and 

Once again, when the preceding expression is substituted into (3.22) we en- 
counter hypergeometric functions of the logarithmic type so that the final 
result for the Nusselt-number expansion becomes quite simply 

+(13E3- 10)[3]Pr-1+o(Pr-1) , (5.15) 

(5.16) 

I 
where 53 = 1 - (tl*/tl)+ 

and p = -0 .1988, . . . .  

Again, the remarks of the paragraph following equation (5.11) are also applic- 
able to (5.15). 
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5.2. Expansions for small Pr 
For similarity flows, the results for small Pr of $4, which are summarized by 
(4.38) and (4.39), can also be reduced to a much more elementary form. Since 
the variable t of $4, equation (4.25), will be identical henceforth to the variable 
t ,  of (5 .2) ,  we shall omit occasionally the subscript 1. 

In  the way of preliminary results, we note that the function R(t) of (4.27) 
can be expressed, by means of (4.2), (5.3) and (5.4), as 

R(t) = -Ao(%)&, 

where A0 = AdP) = lim [?1 -f(r)l = J [1 -Y(r)I d% (5.17) 
7 - f m  0 

which is related to the 'displacement thickness' of the laminar boundary layer. 
Therefore, the corresponding function AI0) of (4.28) is merely 

03 

Aj0)(7, t*)  = - A0{2(7 + t*))-*. 

Similarly, we find, for the function M ( t )  of (4.33), 

(5.18) 

M ( t )  = 2A,t (5.19) 

The result given by (4.39) can now be simplified considerably by means of 
(5.18) and (5.19). Thus, letting 

.gl = 7/t  = 1 -tT/tl, (5.20) 

we obtain for the first function in (4.39) 

KJO)(t; t* )  = (2/7r.g1)4. (5.21) 

On the other hand, because of (4.30) and (5.18), together with (5.8) and (5.9), 

= - [A0/2(2t)91 P,(h 4; 2 ;  611, 
whence it follows that 

Kdl'(t; t*) = [28([1) - &A0 zFi(+, +; 2; ti)], (5.22) 

which is clearly a function only of t1. Furthermore, on account of (5. l a ) ,  

KJ1)(t; 0) K~"(CO; t") = - 2A0/n. (5.23) 

The evaluation of the third function of (4.39) poses more of a problem, however. 
In  the first place the use of equations (4.36), (4.37) and (5.19) results in the 
following rather complicated expression 
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4: = t/t" - 1 = El/( 1 - fll), 

359 

where H is the Heaviside function, a, b, c and f are the functions of h and A' 
defined in (4.36)) and 

El being the variable of (5 .20) .  Fortunately, the double integral appearing here 
can be developed in a power series in gT, which can be expressed subsequently 
in terms of known functions. To demonstrate this, we first let 

p = h'htg, s = g(hH + h-&), 

so that the term containing c; in the above integral becomes 

(A'[; + 1 )  (h'hg + 1 )  = p2+ 2sp + 1. 

Then, by substituting into the integrand the well-known expansion in terms of 
the Legendre polynomials P, 

m 

(p2+2sp+1)-4 = 2 (-p)'"n(s), 
n=O 

we obtain, on termwise integration, 

where 

for n = 0, 1 ,  2 ,  . . . . Since the above Legendre expansion is absolutely convergent 
for < 1, in the region 0 6 A, A' < 1 ,  it  follows that the power series in (3.24) 
will be absolutely convergent for 1flT1 < 1 ,  and therefore, for t* 6 t < 2t*. 
Moreover, we shall show in Appendix 2 that this series can be expressed in terms 
of products of Legendre functions of the type 

C n = /'/' (h')"(h)"12Pn(~hs+ah-s)f(h,h')dh'dh 
0 0  

(5.25) 
to give, finally, for (5.24)) 

where 

with QI = Qf(2kY1 - 11, Q, = Q!- 

N(5J = [(l-EJ/EiI [&-a&&+ ( 1 - 4 1 ) - *  ( Q ~ Q ~ ~ - Q - ~ Q ~ ) l )  
def def 

The limiting form of (5.26) for t* --f 0 or t -+ co (fll -+ 1) can be deduced readily 
from the relations (Erdelyi et aZ. 1954 H.T.F., vol. 1) 

for z +  1, 1 Qt(z )  + 2-4(2- I)$ 

Q, (2) -+ - *log (& - 4) - y -  $(v + 1) and 

where is Euler's constant, and $ denotes here the logarithmic derivative of the 
gamma function. Thus, we find that 

h', jz)( t ;  0) K$~)(co;  t*)  = (2 /~ )4{Al+  (Ai/2n) [$(X) - $($)I) 
(2/n)* [A, + (AX/2n) (4 - n)]. (5.27) 
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In order now to summarize formally the results of this section we note that 
for a given differentiable surface temperature distribution 8,(x) = h(t)  we can 
apply the superposition formula of (4.40) together with (5.21), (5.23) and 
(5.26) to derive the following asymptotic relation for heat transfer to ‘similar’ 
boundary layer flows : 

(5.28) 

where the primes denote differentiation with respect to t (=  t l )  and N ( < )  is the 
function appearing in (5.26). The appropriate expression for the term of O(Pe-4) 
(zero for planar flows) could also have been inserted from the results in Appendix 1. 

As a specific example of the application of (5 .28 ) ,  we consider now the case 
of a planar ‘wedge-type’ flow with a surface temperature which increases as a 
power of the distance along the surface. In our present notation this can be stated 

as yo(x) = 1, U(x) = x y n z +  1)hP = t p ,  

O,&) = h(tl) = xs = (m+ 1 y t ; ,  

where 

In this ease, the first two integrals occurring in (5.28) become, respectively, 

and 

= 4 [ r ( v +  i ) / r ( v +  &)y, 
the first result being the well-known expression for the ‘beta ’ integral, and the 
second following on termwise integration of the power series for 23’1 with subse- 
quent application of (5.12). Thus, we find for (5.28) that 

1 - 

(5.28) 
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to the order of terms indicated. Since v is arbitrary, (5.20) represents an extension 
of the result of Morgan et al. (1958) which applies only as long as v is an integer. 

In  order to specify the term of O(Pr)  in (5.29) it is necessary to evaluate inte- 

“ - 5  2 - 5  grals of the form 

(where h and p assume independently the values zero or unity) which we were 
unable to express in terms of known functions. However, for the special case of a 
uniform surface temperature, say 

OJx) = h(t) = 1, 

the term in question is given immediately by (5.27). Thus, taking account of 
(5.23), we find that (5.28) reduces in this case to 

4--n 
(1 - JZA,(Pr)* + [ ( A! + A,] Pr + O(Pr8) + O(Pe-4) 

(5.30) 

We recall that the constants A, and A,, which depend on the ‘wedge parameter ’ 
p, are defined by (5.17) and (5.19); these could then be evaluated from the tabu- 
lated numerical solutions of (5.4). Considering, for example, the special case of a 
flat plate a t  zero incidence, where m = p = 0, V ( x )  = 1, we have (from Morgan 
et al. 1958) that A, = 1.2167, .... As for A,, we canemploy the differential equa- 
tion of (5.14) to express the integral of (5.19) as 

where 

Now, with the well-known numerical value 

f”(0) = (0.33206 ...) J2 

and with c taken from Blasius’s (Schlichting 1955) asymptotic expression for 
f ( r l ) ,  c 0.231 4 2 ,  

we have lOg{f”(O)/C} A log (0.332/0*231) = 0.3636 .... 
Thus, (5.30) becomes 

- (x/Re)* (a8/8y),,o = 0-564Pr: - 0-548Pr + 0-508(Pr)8 + o(Pr8) 

to terms of O(Pe-l). 
In  closing, we should point out that in this special case the expansion could 

have been derived directly from the well-known integrals for heat transfer with 
‘similar ’ velocity and temperature distributions, by using a method analogous 
to that described by Merk (1959). 

As a last remark, we note that the term of O(Pra), which we have derived here, 
would tend to indicate a rather poor convergence of the small Pr expansions, 
a fact noted also by Morgan et al. (1958). For example, at P r  = 0.1 the magnitude 
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of this term is already about 10 % of the leading term. On this basis, and in light 
of the remarks of § 4, one might speculate that, in general, the small Pr expansions 
represent semi-convergent series, whose ' apparent ' convergence is further 
weakened by rapidly varying surface temperatures. By contrast, the large-Pr 
expansion would appear to be a convergent series (in descending powers of Pr)  
whose convergence becomes extremely rapid near points where the surface 
temperature is changing rapidly, However, since the ' boundary-layer ' approxi- 
mation (equation (2.3)) for the temperature field is weakened precisely at  such 
points, this does not, of course, imply that the large-Pr expansions give an 
adequate description of forced convection near points of abrupt surface-tem- 
perature changes. 
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Appendix 1. Derivation of the surface curvature correction in the 
expansion for small Pr 

The following is a brief derivation of the O(Pe-6) term in the smallPrexpansion 
of (4.5), as well as the corresponding O(Pr*.Pe-4.) term in the expansion 
(4.10). These terms yield, in turn, the O(Pr&Pe-4) correction in (4.38). 

By employing the expansion technique discussed by Acrivos & Goddard 
(1965) we can show that the function Ojo) of (4.5) must satisfy the partial differen- 
tial equation (A 1.1) 

where Pdo) is the first differential operator of (4.8), OJo) is the first term of (4.5), 
taken here to be the function in (4.23), and Pio) denotes the differential operator 

Here YP) is the second functional coefficient in the stream-function expansion 
(4.3), the function yo(x) has the same significance as in the main text above, 
i.e. it  is identically equal to unity for planar flows and equal t o  the dimensionless 
radius of revolution of the heat-transfer surface for axisymmetric flows, and the 
function al(x) is the dimensionless surface curvature in the plane of flow. More- 
over, in the case of planar flow y,(x) = 0, and for axisymmetric flow y1 and a1 
are related to yo by 

(A 1.3) 

the primes denoting differentiation with respect to x. 
Since the function Y(O) of (4.1) and (4.3) is assumed to be the stream function 

for a potential flow, we can show that the function Ydo)(x) of (4.3), which appears 
above in (A 1.2), must always be related to the first coefficient in (4.3) by 

Yp(x) = +YjO)(x) [y1/y0 - all. (A 1.4) 
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Now, since 8iO)is to satisfy (A 1.1) and (4.9) and to vanish at  y1 = 0 because of 
(4.14), it  must be given by the integral A of (3.11) with 

- p 1 (0) ,g 0 ,  (0) (A 1.5) 

PIO) being the operator defined by (A 1.2). Moreover, we find that this operator 
can be expressed in terms of the variables ( x ,  t )  of (4.25) as 

where 

the latter equality resulking from (A 1.4). Noting further that the last two terms 
in (A 1.6) are a special case of the operator of (3.17) and, as before, that S$), as 
given by (4.23), is a special case of the function (3.16), we can deduce that the 
contribution of these terms to the function p of (A 1.5) will be necessarily a special 
case of (3.18). Finally, we can show readily by (4.33) and (4.25) that 

In  other words, the first term in (A 1.6) represents a contribution to (A 1.5) 
which again is a linear combination of terms like those of (3.18). It follows from 
these considerations that the function q of (A 1.5) will be essentially a linear 
combination of terms like those of (3.18), and that, therefore, 8iO)is expressible as 
a linear combination of functions like those of (3.19). In  particular, we can show 
in a straightforward way that 

eiO)(t,z; t*) = -ze-~2/~'exp 1 (--LC~) A+ [ 4 ( 1 - ~ ) t ~ i 2 ) ( ~ r * , t )  

p1 ( 2 .  8. 2, __ ::;) - ( l -A ) -~Ap(Ar , t* ) lF l  ( 1; p; ~ ::A)] ah, (A 1.7) 

7T 1 - h  

i a  a 
where A p (  7,  t *) = - - [72R(1) (7 + t")] - 7 - R(0) (7 + t*) ,  

7 a7 a7 

A i O ) ( T , t * )  = 2[R(O)(r+t*)+R(1)(7+t*)], 
with R'l'(t) = a1/2Y$0), R(0) = y1/2y0Y~0). 

As it turns out, the resulting expression for the surface derivative of elo) can be 
reduced simply to 

which involves R(0) only. 
Now, by generalizing the expansion of Morgan et al. (1958), one can show that 

the corresponding function 8iO) in the inner expansion (4.10) must satisfy the 
differential equation a z ~ j O )  

the last equality arising from (4.15). Hence, it follows that 8io) is a linear homo- 
geneous function of ij, and by continuing the matching procedure of 54.3, we 
can show that it is indeed the function indicated by (4.23). 

a - a -  -- - - ( ~ l + ~ o a l ) g y ~ B d O ) - O ,  
agz Y aY 
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Finally, we see that equation (A1.8) gives the desired correction term of 
O(Pr$Pe-*)in(4.38). Forplanar flows where yo 3 1, this termvanishesidentically; 
which allows us to conclude that this correction term is due solely to surface 
curvature in planes normal to the plane of flow. In  fact, for planar flows, the 
function of (A 1.7) reduces to a form which can be derived from Boussinesq’s 
(1903) classical formula for the temperature distribution in a potential flow 
field since, due to his co-ordinate transformation which employs the stream and 
potential functions as independent variables, Boussinesq’s expression for the 
temperature distribution is correct to terms of O(Pe-l) for Pr --f 0, provided that 
the surface temperature is continuous, whereas the function 8lo) of (4.23) is, of 
course, correct only to terms of O(Pe-4). However, the expression for heat 
transfer given by (4.23) is identical to Boussinesq’s result, as shown by the fact 
that the derivative (A 1.8) vanishes when y1 = 0. 

Appendix 2. Transformation of a power series in the small Pr ex- 
pansion 

We wish to show here now the power series in (5.24) can be continued analy- 
tically to yield (5.26). Although admittedly somewhat tedious, the derivation 
involves the application of some of the rather remarkable relations between 
hypergeometric functions which should make it of sufficiently general interest 
to warrant its outline here. Since we shall make frequent use of relations given by 
Erdelyi et ab. (1945 H.T.F., vol. 1) we shall refer to this work simply as E. 

First of all, it is a relatively easy matter to show that the double integral of 
(5.24) for the constant C, can be reduced to a single integral involving hyper- 
geometric functions. In  particular, using the definition of a, b,  c, andfin (4.36) 
together with the series 

we obtain by a termwise integration with respect to A’ and by an application of 
the relations (5.7) and (5.9), that 

However, by taking a = 1, b = 4, c = n+$ in one of the relations of Gauss 
(E, p. 103): 

(c - 1) &(a, b ;  c - 1; 2 )  - b2F1(a, b + 1; c; 2 )  = (c  - b - 1) 2Fl(a, b; c; 2 )  

for ‘ contiguous ’ hypergeometric functions, we can reduce the linear combination 
of functions in the integrand to a single function. By employing subsequently the 
transformation (5.9) on this function we find that 
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Next, by repIacing the hypergeometric function here by its power series in h 
(which is convergent for 0 < h < 1) and by integrating termwise with the aid of 
the relations (Erdelyi et al. 1954, T.I.T., vol. 1, p. 171) 

we obtain 

where SF! denotes the generalized hypergeometric series, here of argument unity. 
However, since one of its 'upper ' parameters (n + 2 )  exceeds one of the 'lower ' 
parameters (2) by an integral value n, one can, by n-fold application of the ele- 
mentary relation (E, pp. 188-190) 

3F2(~ + 1, b, c ;  d, e ;  1) = 3F2(~- 1, b, c; d, e; 1) 

+ (bc/de) 3F2(u, b+ 1, c+ 1; d+ 1, e +  1; l), 

reduce the hypergeometric function in the preceding relation to a finite sum of 
simpler hypergeometric functions 2Fl with unit argument, and with the aid of 
(5.12) this sum can in turn be expressed in terms of gamma functions. In  this 
manner, we find that 

C, = +7~{(n+$)/(n+2)}~F~(+,$,  -n; -n-+,2;  I) ,  (A 2.2) 

where the hypergeometric function 3F2, directly expressible in terms of the above 
sum, has a terminating series. 

In order now to sum the series of (5.24) we shall first make use of the fact that 

whenever the series involved are convergent (E, p. 187). Applying next the 
transformation (5.9) to the hypergeometric function on the left-hand side of 
(A 2.3) and in turn applying (A 2.3) to the transformed function, we can deduce 
by comparing like powers of z that 

, ~ , ( - k , ~ , b ; ~ , a - a + i - ~ c ;  1)  = [ r (a-~)r(d+~c)/r(d-a-k)r(a) l  

~ 3 F s ( - k , ~ , b - ~ ;  c ,d ;  1)  
and that 

3 ~ 2 ( - l i , a , b ;  c ,a ;  1) = [ r (a+c-a-b+~c)r (a ) / r (d+k)r (d+c-a-b) l  

x 3E2( - k ,  c-a, c - b ;  d+c-a-b ,  c ;  l),  

which together with the preceding equation for C, gives 

C, = b7T[(n++)!r (~) / (n+2)r(n+~)] ,F2(-n ,~ , i ;  2,2 ;  1) 

= &[(n + 1)  ! r(j)/I?(n+ 3 1  3F2( - n, $, $; 3,2; 1). (A 2.4) 
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Next, by inspecting the latter expression for Cn and (A2.3) (with a = b = Q ,  
c = 3 and d = 2) we see that 

m 
I 

C A,z”= ( ~ - z ) - ~ ~ F ~ ( $ , $ ;  3; ~ I z - 1 )  = ( ~ - . z . ) - ~ ~ F ~ ( ~ , # ;  3; z ) ,  
n=o 

if we take A ,  to be 
4 I’(n + 3 )  

7~ r($) n ! 
A = - L C n = n  ( +l)&(-n ,$ ,$;  3 , 2 ;  1). n 

However, from a theorem of Cayley and Orr (E, pp. 83-83) which states, that, if 
m 

(1 -z)@kb-c2F1(2a, 2b; 3c- 1; z )  = 2 Anzn, 
n=O 

it  follows (by taking a = b = g, c = 2) that, with the aid of (A 3.4), 

Pinally, with this result, we can easily show that 

(A 3.6) 

whenever the various series converge. Now, by (5.25), the hypergeometric 
functions on the right-hand side of (A2.5) can be expressed as a product of 
Legendre functions, so that one can employ the indefinite integral (E,p. 170), 

(r - 1’) (v+ Y + 1) Q y f 4  dz’ = (z2 - 1)’ [&,(z) &:(z) - &(z)  &f(z)l s” 
t o  expess the right-hand side of (A 2.6) as a product of such functions. Equation 
(5.26) follows then from (5.24) in a straightforward manner. 
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